Lecture Notes on the Diperna-lions Theory in Abstract Measure Spaces

نویسنده

  • LUIGI AMBROSIO
چکیده

Contents 1. Introduction 1 2. Reminders on the Cauchy-Lipschitz theory 4 3. Nonsmooth vector fields in Euclidean spaces 4 4. Abstract setup 7 5. Derivations and their regularity 10 6. Eulerian side 11 6.1. Existence of solutions to the continuity equation 11 6.2. Uniqueness of solutions to the continuity equation 14 7. Lagrangian side 16 7.1. ODE's associated to derivations and Regular Lagrangian Flows 16 7.2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well posedness of Lagrangian flows and continuity equations in metric measure spaces

We establish, in a rather general setting, an analogue of DiPerna-Lions theory on wellposedness of flows of ODE’s associated to Sobolev vector fields. Key results are a wellposedness result for the continuity equation associated to suitably defined Sobolev vector fields, via a commutator estimate, and an abstract superposition principle in (possibly extended) metric measure spaces, via an embed...

متن کامل

On ows associated to Sobolev vector elds in Wiener spaces: an approach à la DiPerna-Lions

The aim of this paper is the extension to an in nite-dimensional framework of the theory of ows associated to weakly di erentiable (with respect to the spatial variable x) vector elds b(t, x). Starting from the seminal paper [30], the nite-dimensional theory had in recent times many developments, with applications to uid dynamics [40], [41], [26], to the theory of conservation laws [5], [3], an...

متن کامل

Global Weak Solutions to the Relativistic Vlasov - Maxwell System Revisited 1

Abstract. In their seminal work [3], R. DiPerna and P.-L. Lions established the existence of global weak solutions to the Vlasov-Maxwell system. In the present notes we give a somewhat simplified proof of this result for the relativistic version of this system, the main purpose being to make this important result of kinetic theory more easily accessible to newcomers in the field. We show that t...

متن کامل

Existence and uniqueness of maximal regular flows for non-smooth vector fields

In this paper we provide a complete analogy between the Cauchy-Lipschitz and the DiPerna-Lions theories for ODE’s, by developing a local version of the DiPerna-Lions theory. More precisely, we prove existence and uniqueness of a maximal regular flow for the DiPerna-Lions theory using only local regularity and summability assumptions on the vector field, in analogy with the classical theory, whi...

متن کامل

Fluid Dynamic Limits of the Kinetic Theory of Gases

These three lectures introduce the reader to recent progress on the hydrodynamic limits of the kinetic theory of gases. Lecture 1 outlines the main mathematical results in this direction, and explains in particular how the Euler or NavierStokes equations for compressible as well as incompressible fluids, can be derived from the Boltzmann equation. It also presents the notion of renormalized sol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015